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Ralf Peter Brinkmann1

1 Department of Electrical Engineering and Information Science, Ruhr University Bochum, 44780
Bochum, Germany
2 Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós
str. 29-33, H-1121 Budapest, Hungary

E-mail: maximilian.klich@rub.de

Received 19 September 2021, revised 15 February 2022
Accepted for publication 11 March 2022
Published 7 April 2022

Abstract
Radio-frequency-driven atmospheric pressure plasma jets (RF APPJs) play an essential role in
many technological applications. This work studies the characteristics of these discharges in
the so-called non-neutral regime where the conventional structure of a quasi-neutral bulk and
an electron depleted sheath does not develop, and the electrons are instead organized in a
drift-soliton-like structure that never reaches quasi-neutrality. A hybrid particle-in-cell/Monte
Carlo collisions (PIC/MCC) simulation is set up, which combines a fully kinetic electron
model via the PIC/MCC algorithm with a drift-diffusion model for the ions. In addition, an
analytical model for the electron dynamics is formulated. The formation of the soliton-like
structure and the connection between the soliton and the electron dynamics are investigated.
The location of the electron group follows a drift equation, while the spatial shape can be
described by Poisson–Boltzmann equilibrium in a co-moving frame. A stability analysis is
conducted using the Lyapunov method and a linear stability analysis. A comparison of the
numerical simulation with the analytical models yields a good agreement.

Keywords: hybrid particle-in-cell simulation, atmospheric pressure plasma jet, non-neutral
discharge regime, modeling, COST-jet
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1. Introduction

Non-equilibrium plasmas have become a versatile and com-
monly used tool in modern society [1–5]. The origins of gas
discharges trance back to discharges ignited under atmospheric
pressure conditions. These first human-created plasmas root
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back to the 19th century [5–7]. Recently, those discharges
were re-established as the focus of many works and considered
to be the solution to fundamental challenges of the 21st cen-
tury. The proposed applications range from environmental and
energy-related topics such as CO2 conversion [8, 9] to medical
applications such as cancer treatment [10, 11] or wound heal-
ing [12, 13]. (A far more complete list of applications is given
by Adamovich et al [14].) All applications of atmospheric
pressure plasmas are based on their ability to enable complex
chemistry at near ambient temperatures [1, 4, 6, 7, 14]. This
characteristic of non-equilibrium plasmas means that there is
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an insignificant amount of gas heating that proves essential
in the treatment of biological surfaces in medical applications
[10–13] and other heat-sensitive materials [1–3, 6].

The above-mentioned reasoning is proper for both atmo-
spheric pressure and low-pressure plasmas. However, low-
pressure plasmas require a sophisticated vacuum setup while
the most simple atmospheric pressure plasma can be realized
with just two electrodes and a sufficient power supply. This
difference renders an atmospheric pressure plasma applica-
tion, in most cases, cheaper and the technical requirements
less sophisticated [6]. Additionally, applications that involve
biological probes, bodily tissues, or even a whole patient
[6, 10–14] cannot be realized under conditions anyhow
nearby to vacuum. Nevertheless, atmospheric pressure non-
equilibrium plasmas have specific difficulties too. Most
notable in this context is, due to the high collisionality, the
prevalence to transit to a local thermodynamic equilibrium
[3, 4, 6]. Numerous different plasma source concepts and
even more implementations that take countermeasures against
significant gas heating have been used to circumvent this
difficulty [3, 6, 15].

Standardized plasma sources are required to make it easier
to compare experiments.

Therefore, the European COST (Cooperation in Science
and Technology) Action MP1011 on ‘Biomedical Applica-
tions of Atmospheric Pressure Plasma Technology’ provided
Golda et al [15] with the opportunity to build the COST refer-
ence Microplasma Jet (COST-Jet) as a reference source [16].
In the following, the COST-Jet has proven to be highly repro-
ducible [17], suitable for both experimental and theoretical
studies [18], and surpassed the status of ‘just a reference’
source [19]. Hence, we choose the geometry of the COST-Jet
for our models and simulations.

Despite many advances and developments in recent years
[6, 14], some basic principles, reaction pathways, in short, a
complete and fundamental understanding of atmospheric pres-
sure non-equilibrium plasmas remains desirable. The intrinsic
complexity of the non-linear system of non-equilibrium plas-
mas is coupled to transient physics and inherently complex
chemistry at ambient pressure. As a result of this deduction,
theory and simulations struggle to keep up with the challenges.
To completely describe the tightly bounded capacitively
coupled microplasmas present at atmospheric pressures, a
multi-time-scale, kinetic, and three-dimensional model that
considers all chemical details is needed. Nevertheless, all these
at once are currently simply not feasible. A complete descrip-
tion of the chemistry involves dozens of species and hundreds
of reactions [3, 4, 20–23]. Models trying to resolve as many
chemical details as possible are either global models with no
spatial resolution [20, 21] or at maximum one-dimensional
fluid models [22, 23]. Models prioritizing the spatial reso-
lution result in two-dimensional fluid simulations [24–26]
or one-dimensional kinetic models [27, 28] and restrict their
chemistry to the essential minimum.

As the topical review by Bruggeman et al [6] stresses,
it is common knowledge that atmospheric pressure dis-
charges do not necessarily form a quasi-neutral plasma bulk.
This effect stems from the scaling of the Debye length

λD compared to the discharge length L. Boundary effects
(e.g. sheath formation) take place on the length scale of
λD ≈ 10−1–10−2 mm (estimated for the expected parame-
ters Te ≈ 1 eV and ne ≈ 1015–1017 m−3) and disturb the
quasi-neutrality the bulk plasma strives for. For low-pressure
plasmas, L is in the range of several centimeters and bound-
ary effects govern just a small part of the plasma. However,
atmospheric pressure plasmas use small discharge lengths L
to avoid thermalization. Boundary effects may consequently
affect the whole discharge and prevent the formation of a
quasi-neutral bulk region. Although there are some similari-
ties to Townsend discharges, we chose to call this discharge
regime where no quasi-neutral plasma bulk is formed a non-
neutral discharge regime. The Townsend regime was reported
as operation modes in direct-current (DC) and dielectric bar-
rier discharges (DBDs). For the former device, the discharges
are known as dark Townsend discharge [1, 5], and for the lat-
ter, the so-called Townsend mode is the simplest operation
mode [29–31]. However, the key characteristics of these dis-
charges is a vacuum-like electric field that is not significantly
disturbed by the presence of the charged particles. The non-
neutral regime does not share this feature. Later sections (cf,
sections 4 and 5) will elaborate on this comparison and the
disparities.

Although we suspect to see a non-neutral discharge within
a He/O2 mixture in previous work [25], a non-neutral regime
of the COST-Jet has not been analyzed in detail. Employing
a one-dimensional hybrid particle-in-cell/Monte Carlo colli-
sions (PIC/MCC) simulation, we explore a non-neutral dis-
charge for the He/N2 mixture. Based on the simulation data,
this work aims to describe a non-neutral discharge regime for
the COST-Jet. An emphasis is made on the electron dynamics
of this regime. We find the electrons organized within a moving
Gaussian-shaped spatial profile, which features an immense
form-stability. The prevalence of the structure distincts the
non-neutral regime from other yet reported discharge modes
like the γ, Ω or Penning mode [32–36].

We, according to the structure’s tendency to keep and
quickly regain its shape, characterize it as drift-soliton-like.
The expression soliton describes wave phenomena with a
high degree of dimensional stability that occur in many fields
of physics [37, 38]. In the context of plasma applications,
actual drift-solitons have mainly been reported for magnetized
plasmas [39, 40]. We find the plasma properties such as the
electron temperature Te dominated by the dynamics of the
soliton-like structure. However, the hybrid PIC/MCC simula-
tion functions in this regard more like a numerical experiment
and is too sophisticated to develop a fundamental understand-
ing of the formed soliton. Therefore, an abstract and simplified
yet analytical model for the electron dynamics is formulated. A
detailed mathematical analysis of this model helps to explain
the formation and spatial mold of the electron group and pro-
vides insights to its dominant influence on the electron dynam-
ics. Additionally, deliberations on the stability of the analytical
solutions that include the ideas of Lyapunov [41–43] will be
used to argue for the soliton-analogy.

The rest of the manuscript is organized as follows. Section 2
gives a brief overview of the COST-Jet and describes the
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chemistry under investigation. The following section intro-
duces our simulation framework and essential details of its
realization. The simulation-data-based analysis of the elec-
tron dynamics follows in section 4. Section 5 will provide
the aforementioned analytical model that provides general-
ization and further insight. The analysis of the model is
accompanied by deliberations on the stability of the soliton
solution. A comparison between the simulation and our ana-
lytical model is made in section 6 and aims to visualize the
reliability of the analytical model as a tool for diagnostics. The
final section summarizes our findings, draws conclusions, and
outlines perspectives for future work.

2. The COST reference jet

The COST-Jet is a capacitively coupled radio-frequency-
driven plasma jet specifically designed to function as a ref-
erence plasma source. Nevertheless, recent work [19] shows
that the COST-Jet is a more than decent plasma source for
many applications. While Golda et al [15] provide a complete
characterization and definition of the COST-Jet, this section
gives a brief introduction to the device’s essential features.
By design, the COST-Jet is optimized for diagnostic purposes,
especially optical access and is suitable for theoretical descrip-
tion [15, 22–24, 32–35]. This choice is reflected in the two
quartz plates glued to two stainless steel electrodes to form the
rectangular discharge channel. The quartz plates allow for opti-
cal diagnostics along the horizontal gas-flow axis x and vertical
axis z. Figure 1(a) shows a sketch of the cross-section of the
COST-Jet along the gas-flow-axis x. In addition, the capaci-
tively coupled power delivery at 13.56 MHz combined with
the rectangular geometry allows one-dimensional simulations
to give meaningful results [22–24, 32–35].

Although we firmly believe that a complete model of the
Cost-Jet, a long tube (30 mm) with a tightly bounded 1 mm ×
1 mm lumen, has to regard all three spatial dimensions some-
how, technical limitations currently force us to focus our
study on a one-dimensional model. Similar to previous studies
[22–24, 32–35], we focus on describing the plasma and espe-
cially the electron dynamics between the electrodes along the
z-axis and perpendicular to the gas flow. Moreover, these stud-
ies have shown that a one-dimensional simulations including
a fully self-consistent and kinetic treatment of the electrons
as presented in the following section reproduce all features
observed in experiments [32–35]. Figure 1(b) shows a cross-
section of the setup, and the green line marks the position of
the z-axis. For now, the gas flow is neglected and the plasma is
assumed to be invariant in both the x- and y-direction.

In terms of chemistry, the COST-Jet is operated using a
chemically inert carrier gas (usually helium [15, 22–26, 33,
34], less commonly argon [18, 52]) mixed with a molecu-
lar trace gas (usually nitrogen [24, 33, 34, 52] and/or oxy-
gen [15, 18, 19, 22, 23, 25, 26, 52, 53]). For this study, we
decided to examine the helium/nitrogen mixture. The result-
ing electropositive plasma yields a moderate amount of species
and chemical complexity. Both are beneficial for the analyti-
cal model and the applicability of the numerically demanding

particle-in-cell (PIC) method. Both will be presented in fol-
lowing sections. The details of the chemistry set used for this
study are mainly oriented on previous work [28] and are shown
in table 1. The table reveals that except of the Penning ioniza-
tion (No. 31) no follow-up reactions need to be considered for
the helium/nitrogen mixture. This means that no other reac-
tion requires its reactants to be formed previously in another
reaction (e.g. the helium metastable He∗ needs to be formed by
reaction No. 2 or 3 to than take part in reaction No. 31). A quick
estimate (lifetime τm ≈ 10 ns, flow velocity of the gas stream
vf ≈ 100 m s−1) of the average distance a helium metastable
drifts during its lifetime ends up in the range of 1 μm. Thus, the
accumulation of helium metastables along the gas flow axes is
a negligible effect. The one-dimensional representation of the
jet’s plasma is valid as long as the cooling effect of the gas flow
is considered (e.g. by fixing the temperature of the simulated
gas background).

3. Hybrid particle-in-cell/Monte Carlo collisions
simulation

The PIC simulation is a numerically sophisticated tool that
provides self-consistently calculated statistical representations
of the distribution functions [54–57]. The foundation of the
PIC algorithm traces back to the 1940s [54]. In the 1960s, a
Monte Carlo collisions (MCC) scheme was added that lead to
the commonly used PIC/MCC simulation [55]. In recent years,
the PIC/MCC simulation has had great success in the research
of non-equilibrium plasmas in general [1, 56–59], and the
scheme has been applied in the atmospheric pressure regime
[28, 33, 34]. Nevertheless, the above-discussed demands of
atmospheric pressure discharges severely drive PIC/MCC sim-
ulations to their limits. Therefore, hybrid PIC/MCC simula-
tion schemes for RF-driven plasma jets are utilized to lower
the computational burden while keeping all essential pieces of
physics [27, 58, 60].

Overall, hybrid concepts in plasma modeling are commonly
used. The review paper of van Dijk et al [58] lists numer-
ous techniques, variations, and applications. The hybrid PIC
simulation has many applications in astrophysical plasma stud-
ies [61–64]. These studies reduce the numerical load of their
calculations by describing the electrons as a fluid and solely
resolving the ion dynamics kinetically. As Eremin et al [27]
point out, the situation in RF plasma jets is precisely inverted.
Electrons bear dynamics that require a fully kinetic descrip-
tion, while a fluid description of the ion dynamics leads to a
significantly more efficient model.

For this study, we adapt the hybrid PIC/MCC simulation
concept and develop the one-dimensional explicit electrostatic
hybrid PIC/MCC code Eehric. The following subsections
present some details of the implementation.

3.1. Description of the electrons

As in the classical PIC/MCC scheme, the electrons are
described as particles, represented by so-called superparticles.
Their dynamics are traced by solving the equations of motion
individually for each superparticle [54–57]. The code Eehric
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Figure 1. Simplified schematic sketches of two cross-sections of the COST-Jet (refer to Golda et al [15] for complete schematics and
description). Electrodes are depicted in dark gray, and the quartz dielectric is shown in light blue. (a) A cross-section in the xz-plane along
the gas flow direction x. (b) A cross-section in the yz-plane (perpendicular to the gas flow direction) at an arbitrary position of the discharge
channel. The dashed green line marks the position of the z-axis in the center of the discharge along which the simulation is run.

applies the Leap-Frog algorithm on a regular one-dimensional
Cartesian discretization of the equations of motion. The width
Δz of the resulting spatial grid is coupled to the Debye length
by λD � 2 Δz to avoid numerical instabilities [55, 57, 59]. For
the Cost-Jet geometry, the small electrode separation allows a
low number of grid points to satisfy the requirement. We fixed
the number of grid points for this study to 201.

The usual Monte Carlo technique is implemented to
account for collisions [55, 57]. Additionally, a null-collision
technique [65] enhances the numerical efficiency of the col-
lision routine. The necessary cross sections for the electron
processes listed in table 1 are retrieved from the website of
the LXCat project [44–46]. For helium, the cross section data
originate from the database Biagi-v7.1 [47] based on version
7.1 of the simulation program Magboltz [66]. For the nitrogen
cross sections, the Phelps database [48] provides data based
on data by Phelps and Pitchford [49]. In terms of this study,
as well as in previous work [28], the effects of gas heating are
neglected.

The collision probability for electrons Pe is found by

Pe = 1 − exp(−νe Δt), (1)

where νe is the electron collision frequency andΔt the discrete
timestep [28, 55, 57, 59]. The criterion for stability Δtωpe �
0.2 that requires the time step Δt to sufficiently resolve the
electron plasma frequency ωpe is overshadowed by the crite-
rion νeΔt � 1 [55, 57, 59]. The latter criterion follows from
a requirement that forbids particles to suffer consecutive col-
lisions per time step. Under atmospheric pressure conditions,
this criterion enforces a much smaller time step than the sta-
bility requirement. We use 1.2 million time steps for each RF
cycle to limit the probability for a second (i.e. missed) collision
per time step to approximately 1 percent. The results shown in
later sections are averaged over 2000 RF periods and binned to
1000 diagnostic time steps within an RF period. This averag-
ing process allows for satisfactory results with a relatively low
number of about 10 000 superparticles. As Erden and Rafatov
[67] present, the influence of the number of superparticles on
the statistics always has to be considered.

3.2. Description of the ions

Eremin et al present that a drift-diffusion approximation is
a valid representation of the ion dynamics at high pressures
[27]. Thus, Eehric adapts this insight and simulates the He+,
He2

+, and N2
+ ions by evaluating the following form of the

one-dimensional drift-diffusion approximation:

∂ni,s

∂t
+

∂Γi,s

∂z
= Si,s, (2)

Γi,s = ni,sμi,sEz − Di,s
∂ni,s

∂z
. (3)

The index s represents the individual ion species. ni is the ion
number density, Γi is the ion flux density, μi is the mobility
constant, Ez denotes the electric field, and Di is the mobility
constant.

As argued in previous work [28], the trace gas admixture is
usually one percent or lower. Thus, the influence of nitrogen on
the gas transport is negligible, and the binary diffusion coeffi-
cients and ion mobility in helium yield a sufficiently accurate
description. The necessary mobility data have been measured
by Frost [68] (He+/He), Beaty and Patterson [69] (He2

+/He),
and McFarland et al [70] (N2

+/He). The numerical values for
He2

+/He and N2
+/He are retrieved from the data collection of

Ellis et al [71]. Values for the binary diffusion coefficients have
been obtained by Deloche et al [72] (He+/He and He2

+/He)
and Walker and Westenberg [73] (N2

+/He).
For the numerical solution of equations (2) and (3), the

scheme presented by Scharfetter and Gummel [74] is applied.
Other authors [75] refer to this scheme as exponential scheme
due to its exponential nature that provides an inherent switch-
ing between upwind and downwind differencing.

Ion-induced secondary electron emission is included by
basically counting the number of secondary electrons NSE,r/l

at each electrode separately and releasing electrons as long
as NSE,r/l � 1. To account for an in time average suffi-
cient number of secondary electrons, the decimal part of
NSE,r/l are treated by a random process. Whenever the
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Table 1. Plasma chemical reactions considered in the simulation. The last column uses the following abbreviations for the data sources of
the corresponding cross sections or reaction rates: (1) data from the Biagi-v7.1 database obtained via the website of the LXCat project
[44–47], (2) data based on [49] obtained from the Phelps database via the website of the LXCat project [44–46, 48], (3) reaction rates
retrieved from Brok et al [50] and Sakiyama and Graves [51]. The second column from the right gives threshold energies εthr for electron
reactions and reaction rates kr for ion reactions.

No. Reaction Process name εthr/kr src

1 e + He → e + He Elastic scattering — (1)
2 e + He → e + He∗ Triplet excitation 19.82 eV (1)
3 e + He → e + He∗ Singlet excitation 20.61 eV (1)
4 e + He → e + He+ + e Ionization 24.59 eV (1)

5 e + N2 → e + N2 Elastic scattering — (2)
6 e + N2 → e + N2 (r =∗) Rot. excitation 20 meV (2)
7 e + N2 → e + N2 (v = 1) Vib. excitation 290 meV (2)
8 e + N2 → e + N2 (v = 1) Vib. excitation 291 meV (2)
9 e + N2 → e + N2 (v = 2) Vib. excitation 590 meV (2)
10 e + N2 → e + N2 (v = 3) Vib. excitation 880 meV (2)
11 e + N2 → e + N2 (v = 4) Vib. excitation 1.17 eV (2)
12 e + N2 → e + N2 (v = 5) Vib. excitation 1.47 eV (2)
13 e + N2 → e + N2 (v = 6) Vib. excitation 1.76 eV (2)
14 e + N2 → e + N2 (v = 7) Vib. excitation 2.06 eV (2)
15 e + N2 → e + N2 (v = 8) Vib. excitation 2.35 eV (2)
16 e + N2 → e + N2 (A 3Σ+

u , v = 0–4) Electr. excitation 6.17 eV (2)
17 e + N2 → e + N2(A3Σ+

u , v = 5–9) Electr. excitation 7.00 eV (2)
18 e + N2 → e + N2 (B3Πg) Electr. excitation 7.35 eV (2)
19 e + N2 → e + N2 (W3Δu) Electr. excitation 7.36 eV (2)
20 e + N2 → e + N2(A3Σ+

u , v � 10) Electr. excitation 7.80 eV (2)
21 e + N2 → e + N2 (B′ 3Σ−

u ) Electr. excitation 8.16 eV (2)
22 e + N2 → e + N2 (a′ 1Σ−

u ) Electr. excitation 8.40 eV (2)
23 e + N2 → e + N2 (a 1Πg) Electr. excitation 8.55 eV (2)
24 e + N2 → e + N2 (w1Δu) Electr. excitation 8.89 eV (2)
25 e + N2 → e + N2 (C3Πu) Electr. excitation 11.03 eV (2)
26 e + N2 → e + N2 (E 3Σ+

g ) Electr. excitation 11.87 eV (2)
27 e + N2 → e + N2 (a′′ 1Σ+

g ) Electr. excitation 12.25 eV (2)
28 e + N2 → e + N + N Dissociation 13.0 eV (2)
29 e + N2 → e + N2

+ + e Ionization 15.6 eV (2)
30 e + N2 → e + N2

+(B 2Σ+
u ) + e Ionization 18.8 eV (2)

31 He∗ + N2 → He + N2
+ + e Penning ionization 5.0 × 10−17 m3 s−1 (3)

32 He+ + He + He → He2
+ + He Ion conversion 1.1 × 10−43 m6 s−1 (3)

equally distributed pseudo-random number in the interval
[0, 1) R01 � NSE,r/l, a secondary electron is generated at the
respective electrode (left/right). The total number of secondary
electrons is calculated by

NSE,r/l =
1
we

∑
s

γi,sΓi,el,s
Δt
Δz

. (4)

we is the weight of the electron superparticles, γi,s the ion-
induced secondary electron emission coefficient, and Γi,el,s the
ion flux density towards either the right or left electrode sur-
face. Whenever a secondary electron is launched from the sur-
face, the respective counter NSE,e/l is reduced by one or for
fractions reset to zero. The coefficients are estimated based on
an empirical formula given by Raizer [5] that finds application
in recent work [36, 60]. The formula reads

γi,s = 0.016
(
εthr,s − 2εφ

)
, (5)

with εthr,s the ionization threshold energy of species
s (cf table 1), and εφ the work function of the electrode
surface material (cf Wilson [76]). For the He/N2 mixture at
hand, the relevant coefficients approximate to γi,He+ = 0.25,
γi,He2

+ = 0.25, and γi,N2
+ = 0.1. These values may be

rough estimates. However, the results show that the non-
neutral discharge regime in insensitive towards a slight
arbitrariness of the secondary electron emission coefficients
(cf, section 4).

To account for Penning ionization according to process no.
31 (cf table 1), a procedure similar to previous work [28] is
adapted. It is assumed that for both excitation reactions of
helium (cf reaction no. 2 and 3, table 1), about 50 percent
result in the formation of the metastable states He(21S) and
He(23S), respectively. The time constant for diffusion is small
compared to the lifetime of the metastables. Thus, diffusion
is neglected, and a metastable atom is created by saving the

5



Plasma Sources Sci. Technol. 31 (2022) 045003 M Klich et al

position xm and generation time tm of the according excitation
event. Each metastable is assigned with a lifetime

τm = − 1
krnN2

log(1 − R01). (6)

kr is the reaction rate for the Penning ionization retrieved from
[50, 51], nN2 denotes the neutral gas density of nitrogen, and
R01 is a pseudo-random number on the interval [0, 1). For
t � tm + τm, the metastable decays via the Penning process by
contributing to the ionization at position xm.

4. Simulation results and discussion

The most notable characteristics of the non-neutral regime
of atmospheric pressure capacitively coupled plasma jets are
seen in the density profiles. Figure 2(a) shows a snapshot of
the electron density ne (blue), the total ion density ni,tot (red)
with spatial resolution. The panels (b) (ne), (c) (nN2

+ )), and
(d) (ni,tot) provide spatially and temporally resolved represen-
tations of the respective number densities. First, the figure
shows that the N2

+ ions are the clearly dominant ion species
for this case (figures 2(c) and (d)). Panels (c) and (d) show
no by naked eye visible difference. The density of He2

+ ions
already is about three orders of magnitude lower than that of
the N2

+ ions. For this case, the density of He+ ions, which is
even lower than the density of the He2

+ ions. Hence, both ion
densities are not shown. The extremely low He+ ion density
stems from the efficient ion conversion He+ →He2

+ (cf reac-
tion 32 table 1). This result is in accordance to Martens et al
[77]. Both the He2

+ and the N2
+ ion density profiles exhibit

only a slight temporal modulation. The plasma is operated in
the RF regime (ωp,i � ωRF � ωp,e).

For electrons, on the other hand, figures 2(a) and (b) show a
highly time-dependent structure. The spatial profile of the elec-
tron density ne is approximately Gaussian-shaped (figure 2(a)).
The temporally and spatially resolved profile shows a narrow
band of electrons pushed back and forth between the electrodes
while approximately maintaining their mold (figure 2(b)). This
behavior reminds us on two of the three key characteristics
of solitons as given by Drazin and Johnson ([37], p 15): (i)
a soliton has a permanent shape, (ii) a soliton is localized
within a specific region, and (iii) solitons can interact with-
out changing their shape. The dynamics of the electron group
of figure 2 clearly meets the first two criteria. The third crite-
rion cannot be met by a group of electrons. If, for some rea-
son, two of these electron groups existed and met, they would
interact and eventually form one bigger group of electrons.
Hence, the group of electrons is not a real drift-soliton. How-
ever, we decide to refer to this structure as a drift-soliton in a
figurative way.

The elementary characteristic of the non-neutral discharge
regime is visible by simultaneously looking at the electron
density and ion densities. The peak electron density locally
never resembles the total ion density. Quasi-neutrality is vio-
lated along the whole discharge region. This non-neutral

behavior of the discharge has two implications. First, the elec-
tron dynamics feature specific characteristics that will be dis-
cussed in the following. Second, the classical segregation of
capacitively coupled plasmas in a sheath and a bulk region is
rendered meaningless for this operation regime. The concept
of the boundary sheath edge, especially, and the analysis of its
dynamics that in other studies provide orientation and valuable
insight [33, 34] cannot be used in the context of a non-neutral
regime.

The black lines in figures 2(c) and (d) are introduced to
compensate this loss of reference. They refer to the rough posi-
tion of the soliton-like structure in space and time. The shape
of the electron group is assumed to be Gaussian to calculate
the black lines. Based on this assumption, the position of the
symmetry axis Z is calculated as the first spatial moment of
the electron density, and the width of the structure δz calcu-
lates from the second spatial moment. The black lines mark
the interval Z ± 1.28δz, in which 90 percent of the electrons
are located.

The non-neutral behavior of the discharge reflects in the
electric field and potential. Figure 3 shows the electric poten-
tial φ (a) and the electric field in z-direction Ez (b) with spatial
and temporal resolution. The remaining panels show tempo-
ral snapshots of the individual profiles with spatial resolution
(φ: figure 3(c), Ez: figure 3(d)). Due to not having a quasi-
neutral region, the potential of the discharge is, in first approx-
imation, the electrical potential of a parallel plate capacitor
bearing a positive space charge [78]. Therefore, the spatial pro-
file of the electric potential resembles a compressed parabola
(figure 3(c)), and the maxima and minima of the potential are
primarily located at the electrodes. Accordingly, the electric
field Ez does not show the bulk-specific plateau around zero.
When the electron group is around in the middle of the dis-
charge (e.g. figure 3(d), blue and red lines), the spatial pro-
file of the electric field becomes almost linear (with a small
plateau at the position of the maximal electron density). For
the brief moments when the soliton-like structure is closest to
either electrode, a tiny area develops that is closest to being
quasi-neutral. A corresponding plateau close to the respec-
tive electrode becomes visible (e.g. figure 3(d), orange and
purple lines). Additionally, and in contrast to a quasi-neutral
regime, the electric field often has a single direction and does
not cross zero (figures 3(b) and (d)). This distinct field struc-
ture shares analogies to the dark Townsend discharges in DC
discharges [1, 5] and the Townsend mode of DBDs [29–31].
Both of these discharge regimes are characterized by an elec-
tric field barely disturbed by the charged particles. Yet, the
plateau shape similar to classical discharge modes [36, 57]
stems from the interaction of charged particles with the field.
Since we find characteristics of both the Townsend regime and
‘classical’ RF discharges in our non-neutral regime, we define
the non-neutral discharge regime as an intermediate regime in
between.

The, in the context of a capacitively coupled plasma, unique
electric field structure and the strict localization of the elec-
trons within a soliton-like group reflect in the whole electron
dynamics. Figure 4 shows the power density Ps for different
particle species (electrons: (a), He2

+ ions: (c), N2
+ ions: (d)
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Figure 2. Simulated profiles of the number density ns. (a) A temporal snapshots of the spatial profile of the electron and total ion density
(movie 1 (https://stacks.iop.org/PSST/31/045003/mmedia) is provided to show the full dynamics). (b)–(d) Temporally and spatially resolved
profile of the electron density ne (b), the N2

+ ion density nN2
+ (c), and the total ion density ni,tot (d). The black lines indicate the estimated

position of the electron group. The data are obtained from the hybrid PIC/MCC simulation with the parameters: VRF = 220 V, xN2
+ = 0.01,

γi,He+ = γi,He2
+ = 0.25, γi,N2

+ = 0.1.

and the electron temperature Te (b)). The species-specific
power density Ps is calculated as the product of the individ-
ual current density js and the electrical field Ez. We retrieve Te

from the diagonal element pzz of the pressure tensor, which is
defined as

pzz = mene
(
〈v2

z 〉 − u2
)

(7)

with me the electron mass, ne the electron number density, 〈v2
z 〉

the electron’s mean-square velocity, and u the mean velocity
of the electrons. The main advantage of this method is that no
assumptions on the electron energy distribution function are
required. Details of these diagnostics are found in previous
work [57].

The dynamics of the soliton-like structure are reflected in
the electron power absorption patterns. As discussed before,
90 percent of the electrons are located inside the ‘soliton area’
enclosed by the black curves (figure 4(a)). Accordingly, energy
loss and gain almost exclusively happen inside this region.
Whenever the structure moves, electrons are accelerated along

its path and gain energy from interacting with the electrical
field. The most substantial energy gain is observed when the
electron group approaches the middle of the discharge gap,
and the movement speed of the group directly correlates to the
energy gain. While changing its direction at the electrodes, the
soliton-like structure becomes decelerated and accelerated in
the opposing direction afterward. The described behavior is,
for example, seen between 25 and 45 ns (figure 4(a)). Further-
more, the moments when the movement speed of the electron
group drops to zero (t ≈ 35 ns and t ≈ 70 ns) are the sole
opportunities for a significant amount of electrons to leave the
discharge. At these times, the soliton-like structure is closest
to the electrodes, and the loss of electrons coincides with the
only visible net loss of energy.

In summary, the electron dynamics of the non-neutral
regime are coupled to the soliton-like structure rather than
the oscillating boundary sheath (that in this case—at least in

7
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Figure 3. Simulated profiles of the electric potential φ and the electric field Ez. (a) and (b) Temporally and spatially resolved profiles of the
potential φ (a) and electric field Ez (b). The black lines indicate the estimated position of the electron group. (c) and (d) Characteristic
temporal snapshots of the spatial profile of the potential φ (c) and the electric field Ez (d). Movie 2 provides an animation of the field
dynamics as sketched in panels (c) and (d). The data are obtained from the hybrid PIC/MCC simulation with the parameters: VRF = 220 V,
xN2

+ = 0.01, γi,He+ = γi,He2
+ = 0.25, γi,N2

+ = 0.1.

its classical sense—does not even exist). As a result, energy
gain patterns along the movement of the electron group out-
weigh energy loss patterns at a standstill by a lot. Addition-
ally, the energy absorbed by electrons (figure 4(a)) completely
overshadows the energy delivered to the ions (figures 4(c)
and (d)). The power absorption by ions (figures 4(c) and (d))
basically mimics the particular structure of the electrical field
(figure 3(b)). For the positive half-wave of the RF voltage
(t ≈ 0–37 ns), the electrical field is approximatively positive
over the whole discharge gap, and ions are pushed towards the
grounded electrode. For the negative half-wave of the RF volt-
age (t ≈ 37–74 ns), the situation is reversed. Ions are pulled
towards the powered electrode. The energy absorption linked
to these dynamics is simple. Both He2

+ and N2
+ ions show

a similar absorption pattern. The stronger the electric field,
the more energy is absorbed. Accordingly, the maxima of the
absorbed power are in front of the electrodes and coincide with

the maxima of the electrical field (comp. figures 3(b) to 4(c)
and (d)).

Another impact of the field structure shows inside the tem-
poral and spatial behavior of the electron temperature dis-
played in figure 4(b). The figure, first of all shows, that the
majority of the electrons (the ones inside the ‘soliton area’)
share the same temperature. Outside of the ‘soliton area’,
structures are visible that correlate to the secondary electron
emission. The maxima of the electron temperature are located
in front of the electrodes and switch sides each half-wave.
These maxima coincide with the maxima of the electrical field
(figure 3(b)) and the maxima of the ion energy absorption
(figures 4(c) and (d)). At t ≈ 20 ns (grounded) and t ≈ 55 ns
(powered), the amount of ions reaching the respective elec-
trode is highest, and so is the production of secondary elec-
trons. Simultaneously, the absolute value of the field strength
is maximal, and the secondary electrons gain an equivalent
amount of energy.
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Figure 4. Simulated temporally and spatially resolved profiles of (a) the power density absorbed by electrons Pe, (b) the electron
temperature Te, (c) the power density absorbed by He2

+ ions PHe2
+ , and (d) the power density absorbed by N2

+ ions PN2
+ . The black lines

indicate the estimated position of the electron group. The data are obtained from the hybrid PIC/MCC simulation with the parameters:
VRF = 220 V, xN2

+ = 0.01, γi,He+ = γi,He2
+ = 0.25, γi,N2

+ = 0.1.

Nevertheless, figure 4(b) is misleading regarding the role
of secondary electrons. First, their number is low. Recall-
ing the meaning of the black curves, it becomes evident that
a tiny fraction of a few percent of the electron population
consists of secondary electrons. Second, secondary electrons
absorb an insignificant amount of the energy. Figure 4(a)
shows structures (in light red color) in front of the respective
electrodes (grounded: positive half-wave, powered: negative
half-wave). However, the simultaneous energy gain by elec-
trons inside the soliton-like structure outweighs these patterns.
Third, another kind of electrons, the ones created by Penning
ionization, is more crucial to the non-neutral discharge regime.
An investigation of the ionization dynamics will prove this
point.

First, the term ‘Penning electron’ must be defined. For
this study, we chose to define an electron as a ‘Penning
electron’ when created by the Penning ionization process
(table 1: No. 31). Penning electrons keep their status until

their first ionizing collision. Please note that this definition
is somehow arbitrary. According to the above definition, an
electron avalanche or ionization cascade started by a ‘Penning
electron’ will be missed. Therefore, the importance of Pen-
ning ionization may be underestimated by our means. As the
following section will point out, this source of arbitrariness
cannot affect our results, and any representation of different
ionization channels is sufficient for our arguments.

Panels (a) to (c) in figure 5 present temporally and spa-
tially resolved profiles of the ionization rate of nitrogen
differentiated by the diagnostics as mentioned above. The ion-
ization patterns of the electrons inside the soliton-like struc-
ture (figure 5(a)) coincide with the patterns of electron power
absorption (figure 4(a)). As discussed before, electrons mainly
gain energy while the electron group as a whole is moving.
Accordingly, there is ionization during the same time. When
the electron group stops (at powered electrode: t ≈ 35 ns, at
grounded electrode: t ≈ 70 ns), electrons get lost, lose energy,
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and do not ionize. The light green structures adjacent to
the respective electrodes (grounded: t ≈ 10–25 ns, powered:
t ≈ 50–65 ns) stem from ionization associated with the sec-
ondary electrons. Their contribution is insignificant compared
to the ionization inside the soliton-like structure and the ion-
ization pattern of Penning electrons.

The latter group of electrons has a diffuse temporal struc-
ture (figure 5(b)). Due to its nature and the high pressure, Pen-
ning ionization introduces a delay between the initial electron
impact producing the metastable helium state and the actual
ionization when the metastable decays via collision with a
nitrogen molecule. As a result, the ionization pattern of Pen-
ning electrons is vaguely connected to the energy absorption
(the more energy, the more likely an inelastic collision). How-
ever, the distinct temporal structure becomes smeared out.
The remainder is a spatial profile with an ionization maxi-
mum between z = 0.4–0.6 mm. Nonetheless, Penning ioniza-
tion happens always and anywhere among the discharge gap
(except a small region in front of the electrodes where no high
energetic electrons are present at all).

In the total ionization pattern (figure 5(c)), the structure
caused by the movement of the electron group is dominant.
Nevertheless, the ionization band in the region z = 0.4 to
0.6 mm caused by Penning ionization is still visible. This
observation and the comparable scales of figures 5(a) and (b)
lead to the conclusion that Penning ionization has a signifi-
cant share on the total ionization. Anyhow, figure 5(d) shows
that the density made up by Penning electrons is insignificant,
and there is no sign of different behavior of the Penning elec-
trons. Apparently, electrons are rapidly incorporated into the
soliton-like structure regardless of their origin. The discussion
of figure 4(b) regarding the electron temperature Te painted
a similar picture. All electrons more or less share the same
fate, and neither diagnostic nor analysis of the simulation data
could provide an answer. For now, two key questions remain
open: (i) how does the soliton-like structure form inside the
non-neutral discharge regime? And (ii) why do the electrons
behave similarly?

5. Mathematical modeling

To develop a better physical understanding of the discharge
dynamics and to answer the questions raised above, we now
analyze an elementary drift-diffusion model. Such models
trade, in a way, quantitative accuracy for mathematical trans-
parency [58]. We are interested in the behavior of a soliton (the
term used in the sense of section 4) that is not disturbed by the
boundaries, and extend the solution domain to the real axis.
Moreover, we focus on the dynamics of the electrons and the
electric field and treat the ion density ni as a spatial and tem-
poral constant. The electron model is given by the equation of
continuity with the generation term neglected,

∂ne

∂t
+

∂Γe

∂z
= 0. (8)

The reason for this neglect is a time scale argument that can
be deduced from figure 5. There is approximately one percent
of the density created during one RF-cycle. Therefore, sources

are negligible for the established plasma on the time scale of an
RF period. The fluxΓe is calculated with the diffusion constant
De and the mobility μe,

Γe = −De
∂ne

∂z
− μeEzne. (9)

The electric field Ez(z, t) and its potential φ(z, t) are given by
Poisson’s equation:

ε0
∂Ez

∂z
= −ε0

∂2φ

∂z2
= e(ni − ne). (10)

The total discharge current density jz(t) is assumed to be peri-
odic in time, average-free and spatially homogeneous. It is
related to the surface charge density, Q(t), as [79]:

− eΓe + ε0
∂Ez

∂t
= jz(t) = −dQ

dt
. (11)

The system of equations is completed by suitable asymp-
totic conditions for z →±∞. The electron density is assumed
to vanish and the electric field is asymptotically linear; the
constants E±∞ have the dimension of the electric field:

ne|z→±∞ = 0, (12)

Ez −
1
ε0

eniz

∣∣∣∣
z→±∞

= − 1
ε0

Q(t) + E±∞. (13)

The global dynamics of the electron soliton can be
described by a closed model. We define three spatial moments
of the electron density, namely the total number N (t),
the center of mass (COM) Z(t), and the soliton-averaged
field E(t):

N (t) =
∫ ∞

−∞
ne(z, t)dz, (14)

Z(t) =
1

N (t)

∫ ∞

−∞
zne(z, t)dz, (15)

E(t) =
1

N (t)

∫ ∞

−∞
Ez(z, t)ne(z, t)dz. (16)

Based on the properties of the above quantities, we intro-
duce a comoving frame of reference, which turns out to be
currentless. Furthermore, we simplify the equations by intro-
ducing a dimensionless notation. After a few intermedi-
ate steps, the original system (equations (8)–(11)) collapses
to a second-order differential equation known as the Pois-
son–Boltzmann equation [80, 81, 83–85]:

− ∂2φ

∂ξ2
= 1 − exp (φ) . (17)

The skipped mathematical details of the derivation are
found in appendix A. The Poisson–Boltzmann equation is of
second order and therefore needs two conditions. The symme-
try around the origin demands ∂φ/∂ξ = 0. The second degree
of freedom can conveniently by fixed by setting φ(0) = ln(n0),
with n0 ∈ [0, 1]. This parameter can be identified as the ratio
between the electron density and the ion density at ξ = 0.
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Figure 5. (a)–(c) Temporally and spatially resolved profiles of the ionization dynamics of N2. The panels show the ionization rate Ri,N2
subdivided into (a) ionization caused by electrons associated with the soliton-like structure, (b) ionization due to Penning ionization and the
first ionization process of a ‘Penning electron’, (c) the total ionization rate considering all sources of ionization. We refer to the text for a
detailed explanation of the division. (d) Shows a characteristic temporal snapshot of the spatial profile of the density of electron species
classified in the same manner as the ionization (movie 3 provides an animated version of this diagnostics). The white lines indicate the
estimated position of the electron group. The data are obtained from the hybrid PIC/MCC simulation with the parameters: VRF = 220 V,
xN2

+ = 0.01, γi,He+ = γi,He2
+ = 0.25, γi,N2

+ = 0.1.

Analytical solutions to (17) are well known but quite incon-
venient to handle [84, 85]. Figure 6 presents numerical solu-
tions for the electron density ne, the electric potential φ, and
the electric field Ez. The character of the solutions depends
on the parameter n0. For n0 close to 1, the bulk-sheath struc-
ture of low-pressure discharges is recovered. For values of
n0 that are considerably smaller, strongly non-neutral struc-
tures appear. Compared to figures 2(b) and 3, the orange and
green curves already approximate the previously discussed
simulation results (cf section 4).

Furthermore, the Poisson–Boltzmann equation displays a
crucial distinction between this non-neutral discharge regime,
the Townsend regime, and ‘classical’ RF discharges. The
right-hand side of equation (17) accounts for the influence of
charged particles on the electric field. Although the exponen-
tial term (i.e. the influence of electrons) might be neglected
for very non-neutral scenarios (e.g. the blue curve of figure 6),

there is always a non-zero contribution of charged particles
(i.e. a significant disparity from a Townsend scenario). On the
other hand, recent work has shown that equation (17) alone
does not suffice to describe the whole discharge domain of a
‘classical’ RF discharge (i.e. it is part of a more sophisticated
model [80, 82]). Therefore, the non-neutral regime sets itself
apart from both of the other discharges.

Intuitively, the stationary solutions are stable. An effective
method to show this formally is Lyapunov’s direct method
[41–43]. The starting point is a balance equation for the
density of the Helmholtz free energy [83, 85–88]:

∂

∂t

(
1
2

Ez
2 + ne log(ne) − ne

)
+

∂

∂ξ
(Γe log(ne)) = −Γe

2

ne
.

(18)
The Helmholtz free energy itself reads as follows, where the

temporally constant last term in the integrand serves to render
the integral finite:
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Figure 6. A numerical solution of equation (17) for various parameters n0. (a) Electron density ne, (b) electrical potential φ, and (c) electric
field Ez. All properties are given in terms of dimensionless variables within a current-free reference frame.

Figure 7. (a) The first six numerically calculated eigenvalues of the linear perturbation equation. (b) The first three even eigenfunctions, and
(c) the first three odd eigenfunctions for n0 = 0.75.

F =

∫ ∞

−∞

(
1
2

Ez
2 + ne log(ne) − ne −

1
2

(
|ξ|+ N

2

)2
)

dξ.

(19)
The time derivative of F is negative semi-definite, so that it is
a suitable candidate for a Lyapunov functional [88]. Note that
the equality sign is only assumed when the flux and with it the
dissipation vanishes:

dF
dt

= −
∫ ∞

−∞

Γe
2

ne
dξ � 0. (20)

A solution of equation (17) is stable when it represents a min-
imum of the free energy under the constraint of a fixed par-
ticle number N . A constraint-free variational problem can be
formulated with the help of a Lagrangian multiplier Λ:

L = F + ΛN =

∫ +∞

−∞

(
1
2

(
Ez

2 −
(
|ξ|+ N

2

)2
)

+ ne (log(ne) − 1 + Λ)) dξ. (21)

The first variation of L reads as follows, where the second
identity is obtained by partial integration of the first term,
taking Poisson’s equation for δEz into account:

δL =

∫ +∞

−∞
(EzδEz + δne log(ne) + Λδne) dξ,

=

∫ +∞

−∞
δne (−φ+ log(ne) + Λ) dξ. (22)

The functional L has an extremum when δL vanishes for all
δne. This implies that the bracket in the second identity van-
ishes. The electrons must be in Boltzmann equilibrium. The
fact that Λ = 0 is a consequence of the choice of units:

ne = exp(φ− Λ) ≡ exp(φ). (23)

The second variation (24) directly shows that all extrema of
the functional are minima, the equilibria are therefore stable:

δ2L =

∫ +∞

−∞

(
δEz

2 +
δne

2

ne

)
dξ � 0. (24)
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To assess how quickly the equilibrium is restored, we ana-
lyze the evolution of a small perturbation of a stationary solu-
tion of equation (17). We assume that the perturbation is
current-free and has an integrated density of zero. Expressed
in the electrical field δEz, the evolution can be described
by a parabolic differential equation, completed by suitable
asymptotic conditions and an initial condition at t = 0:

∂δEz

∂t
=

∂2δEz

∂ξ2
+ Ēz

∂δEz

∂ξ
− exp (φ) δEz,

δEz|ξ→±∞ = 0,

δEz|t=0 = δE0(ξ).

(25)

It is advantageous to interpret the dynamics in the language
of functional analysis. We consider the space of all complex
functions ψ on R which have a finite norm that is motivated
by the second variation of the Helmholtz free energy,

H =

{
ψ| ‖ψ‖2 =

∫ ∞

−∞

(
|ψ|2 + exp (−φ)

∣∣∣∣∂ψ∂ξ
∣∣∣∣
2
)

dξ < ∞
}
.

(26)
This space can be turned into a Hilbert space by defining the
scalar product

〈ψ,ψ′〉 =
∫ ∞

−∞

(
ψ∗ψ′ + exp (−φ)

∂ψ∗

∂ξ

∂ψ′

∂ξ

)
dξ. (27)

The evolution operator is now defined as

Tψ = −∂2ψ

∂ξ2
− Ēz

∂ψ

∂ξ
+ exp (φ)ψ. (28)

A short calculation verifies the identity

〈Tψ,ψ′〉 =
∫ ∞

−∞

(
exp(−φ)

∂2ψ∗

∂ξ2

∂2ψ′

∂ξ2

+ (3 − exp (−φ))
∂ψ∗

∂ξ

∂ψ′

∂ξ
+ ψ∗ψ′

)
dξ,

(29)

from which we conclude that the evolution operator is self-
adjoint and positive definite, so that its spectrum lies on the
positive real axis:

〈Tψ,ψ′〉 = 〈ψ, Tψ′〉. (30)

Figure 7 shows the first eigenvalues and eigenfunctions for
the case n0 = 0.75. Evidently, one eigenvalue is λ1 = 1, the
corresponding eigenfunction is

ψ1(ξ) = exp (φ(ξ)) ∼ ∂Ēz

∂ξ
− 1. (31)

The following identity (established by means of partial inte-
gration) implies that all other eigenvalues are larger than
unity.

〈Tψ,ψ〉 − 〈ψ,ψ〉 =
∫ ∞

−∞
exp(φ)

(
∂2

∂ξ2
(exp (−φ)ψ)

)2

dξ

+

∫ ∞

−∞
exp (φ) (2 − exp (φ))

×
(

∂

∂ξ
(exp (−φ)ψ)

)2

dξ � 0. (32)

Written in this compact functional analytic notation, the
evolution equation for the perturbation and its initial condition
read:

∂δEz

∂t
+ TδEz = 0, (33)

δEz|t=0 = δE0.

An application of the Laplace transform yields

pδEz + TδEz = δE0, (34)

which can be solved in terms of the resolvent:

δEz = (p+ T)−1δE0. (35)

The Laplace back transform gives an explicit solution:

δEz(t) =
∫ i∞

−i∞
(p+ T)−1 exp(pt)dpδE0. (36)

Utilizing that all eigenvalues of T are positive, the answer to
the perturbation is a sum of decaying exponential modes:

δEz(t) =
∞∑

n=1

〈Ψn, δE0〉 exp (−λnt)Ψn. (37)

It can be stated, that the system returns to its equilibrium in
an exponential fashion. The speed is governed by the dielec-
tric relaxation time τ e. For the simulation of section 4, the
dielectric relaxation time is τ e ≈ 38.7 ns, faster than the RF
period (TRF ≈ 73.7 ns). The slowest time constant λ1 = 1 cor-
responds to a motion of the soliton as a whole: if displaced,
the soliton returns to its original position within a few relax-
ation times. This is already captured by equation (A.18). The
higher modes govern the restoration of the shape and act even
faster. When distorted, for example by contact with the walls,
the soliton assumes its original shape quite quickly.

6. Simulation and model: physical conclusions

The previous sections have described the non-neutral dis-
charge regime in terms of a hybrid PIC/MCC simulation
(section 4) and a simplified analytical model (section 5).
How do the descriptions compare? For reference, we extract
from our hybrid PIC/MCC simulation at each time t the ratio
n0 = ni/ne and calculate the solution of equation (17). All
quantities are transformed back into physical units and the
laboratory frame.

Figure 8 compares the two models in terms of the tem-
porally and spatially resolved electron density ne, electric
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Figure 8. Comparison of the analytical model in physical units and laboratory coordinates with the results of the hybrid PIC/MCC
simulation. The left column shows for the analytical model the temporally and spatially resolved (a) electron density ne, (d) electric potential
φ, (g) the electric field Ez. The middle column shows the same quantities from the simulation. The right column compares snapshots. Movie
4 provides an animation. The black lines indicate the estimated position of the electron group. The data are obtained from the hybrid
PIC/MCC simulation with the parameters: VRF = 220 V, xN2

+ = 0.01, γi,He+ = γi,He2
+ = 0.25, γi,N2

+ = 0.1.

potential φ, and electric field Ez. The left column presents spa-
tially and temporally resolved results of the analytical model.
The electron density ne is shown in panel (a), the electric poten-
tial φ is shown in panel (d), and the electric field Ez is shown
in panel (g). The mid column displays temporally and spatially
resolved simulation results for the same quantities (b): ne, (e):
φ, (h): Ez. The right column presents temporal snapshots of the
comparison between the analytical model and the simulation
results (c): densities, (f ): φ, (i): Ez. Overall, an excellent qual-
itative and a satisfactory quantitative agreement is observed.
This agreement and details of the following discussion are best
seen when looking at the animated version of figure 8 given in
the attached movie 4. Deviations are most pronounced when
the soliton-like structure approaches either of the surfaces. All
deviations are plausibly explained by the fact that the analyt-
ical model assumes a constant ion density and neglects the
electron absorption at the walls. The assumption of a constant
ion density leads to lesser accurate numerical values for the

electric potential φ and field Ez. The neglect of wall interac-
tions causes the modeled soliton to get stretched at the walls
(cf, figures 8(a)–(c)).

A detailed analysis of figure 8 reveals that the difference of
the model behaves as one would expect based on Poisson’s
equation (10). The electron density ne and the electric field
Ez are connected by one integration, and the electric poten-
tial φ is calculated by integrating ne twice. Each integra-
tion by its mathematical nature results in a smoother quantity
and differences between the integrands become increasingly
irrelevant. Accordingly, the electron density shows both qual-
itatively and quantitatively the strongest deviations from the
simulation results (cf, figure 8(c)), and the electric potential φ
bears the best agreement (i.e. there is just a slight quantitative
deviation—cf, figure 8(i)). Moreover, the qualitative agree-
ment between the temporally and spatially resolved profiles of
the electric potential φ and the field Ez (compare figures 8(d)
and (e) and (g) and (h)) makes the respective contours nearly
indistinguishable.
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In summary and supported by both simulation and theoret-
ical analysis, the following important physical statements can
be made:

• There is indeed a non-neutral regime of RF-driven plasma
jets. In the whole system, the phase-averaged electron
density is considerably smaller than the ion density. A
quasi-neutral bulk does not develop. Instead, the electrons
organize themselves in the form of a soliton-like struc-
ture with a maximum that lies below the ion density. This
reflects that the electron soliton is not much larger than
the Debye length, but scales with it.

• The observed soliton structure is stable. In the simulation,
this is evident from the fast recovery of the form after dis-
tortions by the boundary. In the analytical model, this was
formally proved by means of stability analysis. Physically,
the soliton is (in the co-moving frame) an example of a
Poisson–Boltzmann structure.

• Due to being related to the dynamics of an equilibrium
point (i.e. the COMZ(t)), the soliton dynamics govern the
electron dynamics. The previously discussed fast recovery
from distortions means that electrons rapidly close up to
the soliton.

• One remarkable prediction of the simulation is the
weak spatial gradient of the electron temperature. The
assumption of a spatially constant Te is thus well justified.
The analytical model assumes that Te it is also temporally
constant; this is clearly an oversimplification that deserves
attention.

In conclusion, the physical statements extracted from the
model answer the previously raised key questions: (i) how does
the soliton-like structure form? And (ii) why do the electrons
behave in a uniform fashion?

7. Summary and outlook

The purpose of this study was to describe and analyze the non-
neutral discharge regime of capacitively coupled atmospheric
pressure plasma jets via the combined use of numerical simula-
tion and analytical modeling. In the simulation section, a self-
developed hybrid PIC/MCC code was employed. It was found
that the discharge does not develop a stationary quasi-neutral
bulk. Instead, the electrons form a mobile Gaussian-shaped
structure that we termed a soliton. A characteristic feature of
this soliton is its ability to recover its form when perturbed by
an interaction with the walls. Another peculiar observation was
that the electron temperature within the soliton is temporally
modulated but spatially constant.

For a better insight into the underlying dynamics, we
analyzed a simplified and thus transparent model of the
electron dynamics. In a current-free (i.e. co-moving) frame,
the equilibrium solutions (solitons) were found to follow a
Poisson–Boltzmann equation. Employing Lyapunov’s second
argument, we could show that the solitons are stable. Linear
stability analysis allowed to investigate the dynamic behav-
ior of perturbations of the equilibrium solution. We found that
all distortions decay on timescales comparable to the dielec-
tric relaxation time, way below the RF period. The Boltzmann

equilibrium character of the solitons explains also the observed
uniform heating.

The work closed with a comparison between the results
of the hybrid PIC/MCC simulation and a parameter fitted
solution of the analytical description. Despite its simplified
nature, the analytical model performed quite well. Deviations
between the models could be directly traced back to the simpli-
fying assumptions of the analytical model. In the near future,
we plan to expand our work on the non-neutral discharge
regime. We plan to establish precise criteria for the non-neutral
regime, to distinguish it from the classical discharge modes
[24, 26, 33, 34]. During this mode transition, close attention
will have to be paid to classical concepts such as the bound-
ary sheath and quasi-neutrality. Both have no meaning within
the non-neutral regime, and preliminary evidence suggests that
their definition will be tricky in the transition regime when
n0 approaches unity. Also the other limit poses open ques-
tions: the analytical model yields solutions for arbitrarily small
parameters n0. Is there a lower limit to the value of n0 below
which stable discharge solutions cannot exist?

As a final remark, we stress that we would be interested in
experimental validation of our theoretical speculation. To the
best of our knowledge, there are currently no published exper-
imental studies that confirm the existence of a non-neutral dis-
charge regime of RF driven atmospheric pressure plasma jets.
However, we suspect that the distinct structure of the elec-
tric field may be key to achieve this experimental evidence.
The electric field induced second harmonic generation (E-
FISH) technique that was just recently successfully applied to
the COST-Jet [89] seems as a promising candidate to set up
the required experiment. Due to the discussed similarities of
the non-neutral regime to the Townsend mode of DBDs, we
expect to find experimental proof in the low-power range.
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Appendix A. Discussion of the current-free
reference frame

Integration of the particle balance equation (8) over the spatial
axis leads to the insight that the particle numberN is constant.
Applying the same integral to Poisson’s equation (10) results
in an identity which states that the offsets in the asymptotically
linear electric field forms are related to the electron number:

N = −ε0

e

(
E+∞ − E−∞

)
. (A.1)

Integrating the continuity equation with the weight z, we derive
a differential equation that describes the drift motion of the
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COM with regard to the average field:

dZ
dt

= −μeE . (A.2)

Further, by manipulating the model equations and utilizing the
asymptotic conditions, we obtain two additional identities. The
first identity states

E =
eni

ε0
Z − 1

ε0
Q(t) +

E+∞ + E−∞
2

. (A.3)

The second identity directly relates the current and the density
averaged field:

ε0
dE
dt

+ μeeniE = jz. (A.4)

Equations (A.2) and (A.3) combine to a closed differential
equation for the COM:

dZ
dt

=
μe

ε0
Q(t) − eniμe

ε0
Z − μe

E+∞ + E−∞
2

. (A.5)

When viewed as an initial value problem, the solution Z(t) of
this differential equation depends on the initial value Z0 at t0.
Asymptotically, however, a periodic solution Zas(t) is reached
which solely depends on the modulation Q(t) and the asymp-
totic conditions. The first term is constant and the second term
is periodic and average-free:

Zas(t) = − ε0

2eni

(
E+∞ + E−∞

)

+
μe

ε0

∫ t

−∞
exp

(
−eniμe

ε0
(t − τ )

)
Q(τ )dτ.

(A.6)

The corresponding density averaged field is

Eas(t) =
eni

ε0
Zas −

1
ε0

Q(t) +
E∞ + E−∞

2
. (A.7)

This point Zas(t) is now taken as the origin of new coordinates
which we, for a reason that will become clear shortly, call the
current-free system:

z = Zas(t) + ξ. (A.8)

The electron density, the electron flux, and the electric field are
transformed as follows, where n′

e(ξ, t), Γ′
e(ξ, t), and E′

z(ξ, t) are
measured in the new coordinates:

ne(z, t) = n′
e(ξ, t), (A.9)

Γe(z, t) = n′
e(ξ, t)

dZas

dt
+ Γ′

e(ξ, t), (A.10)

Ez(z, t) = Eas(t) + E′
z(ξ, t). (A.11)

Immediately dropping the prime, the original equations (8) to
(10) remain unchanged. For further streamlining, we adopt a
dimensionless notation. We introduce the Einstein tempera-
ture Te = eDe/μe, the Debye length λD =

√
ε0Te/e2ni, and

the electric relaxation time τ e = ε0/eμeni. Measuring length

in λD, time in τ e, density in ni, flux in niλD/τ e, electric field
in Te/eλD, and electric potential in Te/λD, we obtain:

∂ne

∂t
+

∂Γe

∂ξ
= 0, (A.12)

Γe = −Ezne −
∂ne

∂ξ
, (A.13)

∂Ez

∂ξ
= −∂2φ

∂ξ2
= 1 − ne, (A.14)

0 = −Γe +
∂Ez

∂t
. (A.15)

The asymptotic conditions translate to

ne|ξ→±∞ = 0, (A.16)

Ez − ξ|ξ→±∞ = ±(E∞ − E−∞)/2. (A.17)

In the new coordinates, the equation of motion for the
COM is a simple relaxation. The COM converges exponen-
tially to the reference point 0. The same statement holds for
the particle-averaged electric field:

dZ
dt

= −Z , (A.18)

dE
dt

= −E . (A.19)

Thus, it is reasonable to assume that the structure as a
whole relaxes to an equilibrium. The stationary solution of
equations (A.12)–(A.15) has zero flux, obeys Boltzmann equi-
librium, and is described by the a second-order differential
equation for the potential φ known as the Poisson–Boltzmann
equation [80, 81, 83–85]:

− ∂2φ

∂ξ2
= 1 − exp (φ) . (A.20)
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